POLYGENIC RISK SCORES FOR RISK ASSESSMENT

RICHARD KARLSSON LINNÉR
EXPERT FORUM ON GENOMIC MEDICINE
OCTOBER 23, 2018
INTRODUCTION

Het begint met een idee
60% of total deaths are due to common medical conditions\(^1\)

- Largest contributors are CVDs (30%) and cancers (13%)

Common variants often explain 30–60% of variation\(^2\)

\(1\) Bloom. (2011). *World Economic Forum and the Harvard School of Public Health*

GENOME-WIDE ASSOCIATION STUDIES (GWAS)

- Rapid scientific revolution
 - Hundreds of common conditions
- GWAS “scan” the genome for association by comparing diseased versus healthy
- Pathways and biological mechanisms are not always direct
 - Lung cancer and smoking

Manolio et al. (2013). *Nature Reviews Genetics.*

THE BIG PROBLEM OF SMALL EFFECTS

R^2 vs. N (50% power for $p = 5 \times 10^{-8}$)*

First GWAS hits for Alzheimer’s
First hits for BMI / height
First hits for Bipolar / Schizophrenia
First hits for IQ

* Bonferroni-corrected “genome-wide” significance threshold
GWAS FINDINGS

- Atrial fibrillation, $N = 1$ million
 - Predicts CVD, stroke, and dementia

IMPORTANT ADVANCES

- Decreasing cost of genotyping and low-depth sequencing
 - Below €20
 - Affordability of direct-to-consumer

- New biobank initiatives ($n > 500k$)

- Phenome-wide analyses
 - Efficient parallel computing

- Rare and structural variation
Het begint met een idee

POLYGENIC SCORES
Accuracy of many variants can be substantial

- Upper bound defined by the SNP heritability, often 20–50%\(^1\)

Polygenic scores (PGS) sum genetic liability across many variants into an index:

\[
\hat{S}_i = \sum_{j=1}^{J} \hat{\beta}_j g_{ij}
\]

GWAS summary statistics (\(\hat{\beta}_j\)) as input

- Not only GWAS hits predictive, \(P\) value cutoff
- Many statistical purposes

\(^{1}\) Speed et al. (2017). *Nature Genetics.*
PROOF OF CONCEPT

- PGS *can* stratify diseased versus healthy

But the effect is limited!

PGS 20% vs. 80% (1% vs. 99%) \(^1\)
- CAD: OR = 2.55 (4.83)
- Atrial fibrillation: OR = 2.43 (4.63)
- Type 2 diabetes: OR = 2.33 (3.30)
- IBD: OR = 2.19 (3.87)
- Breast cancer: OR = 2.07 (3.36)

Smoking (>30/day) and lung cancer: OR = 100 \(^2\)

Index of blood lipids and heart attack: OR = 30 \(^3\)

BMI and CAD: OR = 1.25 / 5 BMI \(^4\)

1 Khera et al. (2018). *Nature Genetics.*
3 Goswami et al. (2012). *Clinical Biochemistry.*
4 Labounty et al. (2013). *European Heart Journal Cardiovascular Imaging.*
Genetic risks increased/offset by lifestyle\(^1\)

Test can lead to early diagnosis, prevention, and treatment

Conceivable lifestyle changes

- Cancer risk – smoking, occupational choice
- CVD & Diabetes – diet, physical activity, medication

PGS informative of lifestyle, such as smoking intensity

- Can complement to expensive phenotyping

\(^1\) Inouye et al. (2018). *Journal of the American College of Cardiology.*
DIRECT-TO-CONSUMER GENETIC TESTS

- Limited accuracy and few polygenic risks
 - Hard to interpret
- Penetrant variants BRCA1/APOE
- Some PGS offered by free services
 - Requires genetic test from other service
- Conceivable behavioral changes
 - Lifestyle
 - Life-cycle and insurance decisions
SINGLE CONDITIONS VS. AGGREGATE RISK

- Studies focus on single conditions
 - Evaluate clinical utility of PGS
- But what about the aggregate polygenic risk on mortality?
- I have initiated study of aggregate polygenic risk
 - Estimate survival rates and hazard ratios
 - Influence on life-cycle decisions, such as insurance
IMPLICATIONS FOR UNDERWRITING
Future, PGS will be accurate enough for underwriting

Two main limitations:

1. Data access
2. Legal limitations

1. Limited data access for commercial purposes
 > Requires GWAS in millions of individuals
 > Restricted to non-commercial use
 > Private biobanks measure few medical conditions
 > Reference sample for relative risk, phenotyping problem
 > Limited accuracy in non-Europeans
2. Legal situation varies across countries

- Some take a permissive stance, others do not
- Self-regulation in industry

Sweden, not allowed to *require* genetic test for life, health, and disability insurance\(^1\)

In 2011, an exception amended\(^2\)

- Above 18, and >€133k, may use genetic information *but not a genetic test*
- Similar to Germany, the Netherlands, and Switzerland

\(^1\) FörsäkrLag. 2005:104
\(^2\) Lag om genetisk integritet m.m. (2006:351)
CONCLUSIONS

- Polygenic scores already predict medical conditions
 > Yet, accuracy is low

- More GWAS of many medical conditions
 > Accuracy increases with \(N \)

- Limitations for underwriting
 > Access to data
 > Various legal limitations
THANK YOU!

QUESTIONS?

Richard Karlsson Linnér
r.karlssonlinner@vu.nl
Basic Copyright Notice & Disclaimer

©2018 This presentation is copyright protected. All rights reserved. You may download or print out a hard copy for your private or internal use. You are not permitted to create any modifications or derivatives of this presentation without the prior written permission of the copyright owner.

This presentation is for information purposes only and contains non-binding indications. Any opinions or views expressed are of the author and do not necessarily represent those of Swiss Re. Swiss Re makes no warranties or representations as to the accuracy, comprehensiveness, timeliness or suitability of this presentation for a particular purpose. Anyone shall at its own risk interpret and employ this presentation without relying on it in isolation. In no event will Swiss Re be liable for any loss or damages of any kind, including any direct, indirect or consequential damages, arising out of or in connection with the use of this presentation.